Roll No. :

328452(28)

B. E. (Fourth Semester) Examination 2020 APRTMAY 2022 (New Scheme)

(Electronics and Telecommunication Branch)

ANALOG COMMUNICATION

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt all questions. Part (a) is compulsory and carries 2 marks each. Attempt any two parts from (b), (c) and (d) of each question and carries 7 marks each. All questions carry equal marks.

Unit-I

- 1. (a) Explain the need of modulation briefly.
 - (b) The Signal m(t) in the DSB-SC Signal

$$v(t) = m(t)\cos(\omega_c t + \theta)$$

is to be reconstructed by multiplying v(t) by a signal derive from $v^2(t)$.

- (i) Show that $v^2(t)$ has a component at the frequency 2 f_c . Find its amplitude.
- (ii) If m(t) is band limited to f_m and has a probability density,

$$f(m) = \frac{1}{\sqrt{2 \Pi}} e^{-m^2/2} - \infty \le m \le \infty$$

Find the value of the amplitude of the component of $v^2(t)$ and $2 f_c$.

- (c) Explain the working of super heterodyne receiver with neat block diagram.
- (d) Explain envelop detector with neat and clean diagram.

Unit-II

- 2. (a) Explain Carsons rule of bandwidth.
 - (b) A Carrier is frequency modulated with a sinusoidal with a sinusoidal signal of 2 kHz, resulting in, maximum frequency deviation of 5 kHz.
 - (i) Find the bandwidth of a modulated signal.

- (ii) The amplitude of the modulating sinusoid is increased by a factor of 3, and its frequency is lowered to 1 KHz. Find the maximum frequency deviation and the bandwidth of the new modulated signal.
- (c) Explain with the help of block diagram of Armstrong modulation system.
- (d) Explain Filter method of SSB-Generation.

Unit-III

- 3. (a) Show that $E[a_k b_k] = 0$.
 - (b) Explain effects of linear filtering on noise for R-C low pass filter and ideal low pass filter only.
 - (c) The two-sided power spectral density of noise n(t) shown in below figure.

151

- Plot the power spectral density of the product $n(t) \cos 2 \Pi f_i t$.
- (ii) Calculate the normalized power of the product in the frequency range $-(f_2 - f_1)$ to $(f_2 - f_1)$.
- (d) Gaussian noise n(t) of zero mean has a power spectral density

$$\begin{cases} G_n(f) = 2 \mu V^2 / Hz | f | \le 1 \text{ kHz} \\ G_n(f) = 0 & \text{elsewhere} \end{cases}$$

- What is the normalized power of the noise?
- (ii) Write the probability density function f(n) of the noise.

Unit-IV

- 4, (a) Define figure of merit.
 - (b) Prove that, $\gamma = \frac{\mu^2}{2 + \mu^2}$
 - (c) Derive expression to calculate signal to noise ratio in SSB-SC.
 - (d) A baseband signal m(t) transmitted using SSB.

- $G_m(f) = \begin{cases} \frac{\eta_m \mid f \mid}{2 f_m} \mid f \mid < f_m \\ 0 \mid f \mid > f_m \end{cases}$
- The input signal power.
- The output signal power.

Unit-V

- (a) Define noise in FM receiver.
 - (b) Calculate figure of mefit of frequency modulation system.
 - (c) Explain the need of pre-emphasis and De-emphasis in FM system.
 - (d) Explain the effect of transmitter noise.